ATILF-LLF v.2: Transition-based verbal multiword expression analyser

Hazem AL SAIED*, Marie CANDITO**, Mathieu CONSTANT* January 22, 2018

ATILF - Université de Lorraine*, LLF - université Paris-diderot**

- 1. Introduction
- 2. System description
- 3. Experimental setup
- 4. Results
- 5. Conclusion
- 6. Acknowledgement
- 7. References

Introduction

- Transition-based analyzer for identifying and categorizing VMWEs.
- Extension of the ATILF-LLF 1 system [Al Saied et al., 2017].
- Robust, multi-lingual, data-driven system, with limited language-specific tuning.
- Some cases of embedded and non-contiguous VMWEs.
- Developed and evaluated using PARSEME shared task datasets [Savary et al., 2017].

Include 18 languages, and consist of tokenized sentences in which VMWEs are annotated.

Accompanying resources

- 4 languages have none (BG, ES, HE, LT)
- 4 languages have morphological information (CS, MT, RO, SL)
- 10 languages have full dependency parses (DE, EL, FR, HU, IT, PL, PT, SL, SV, TR)

Datasets

VMWE instance could be:

- Set of several tokens, potentially non-contiguous.
- Embedded in another longer one.
- Overlaps with another one.
- Multi-word token (MWT).

VMWE categories

- 1. Light Verb Constructions (LVC);
- 2. IDioms (ID);
- 3. Inherently REFLexive Verbs (IReflV);
- 4. Verb-Particle Constructions (VPC);
- 5. OTHer verbal MWEs (OTH).

System description

Transition-based systems

- a configuration in our system consists of a triplet $c = (\sigma, \beta, L)$:
 - \cdot σ : Stack containing units under processing.
 - β : Buffer containing the remaining input tokens.
 - A : Set of output VMWEs.

Initial	$c_{s} = (S = [], B = [x_{1}, x_{n}], A = \{\})$
Intermediate	$C_i = (S = [S_m,, S_0], B = [b_0,, b_n], A = \{e_1,, e_k\})$
Terminal	$C_t = (S = [], B = [], A = \{e_1,, e_m\})$

Figure 1: The possible types of configurations.

Transition set

• Transitions predicted by a classifier given the current *configuration*.

SHIFT	$(S, x B, A) \Rightarrow (S x, B, A)$
REDUCE	$(S x, B, A) \Rightarrow (S, B, A)$
WHITE MERGE	$(S x, y, B, A) \Rightarrow (S (x, y), B, A)$
MERGE AS C	$(S x, y, B, A) \Rightarrow (S (x, y), B, A \cup (x, y)_{\mathcal{C}})$
MARK AS C	$(S x,B,A) \Rightarrow (S (x),B,A \cup (x)_{C})$

Figure 2: The transitions used in our system.

• Applies a sequence of *transitions* to incrementally build the output structure in a bottom-up manner.

Example

Transition		Configuration
		[], [Damit, müsste,], []
Shift	\Rightarrow	[Damit], [müsste, man,], []
Reduce	\Rightarrow	[], [müsste, man,], []
Shift	\Rightarrow	[sich], [nun, herumschlagen], []
Shift	\Rightarrow	[sich, nun], [herumschlagen], []
Reduce	\Rightarrow	[sich], [herumschlagen], []
Shift	\Rightarrow	[sich, herumschlagen], [], []
Mark as VPC	\Rightarrow	[sich, herumschlagen _{VPC}], [], [herumschlagen _{VPC}]
Merge as IreflV	\Rightarrow	[(sich, herumschlagen _{VPC}) _{IReflV}], [],
		[herumschlagen _{VPC} , sich, herumschlagen _{VPC}) _{IReflV}]
Reduce	\Rightarrow	[],[],[herumschlagen _{VPC} , (sich, herumschlagen _{VPC}) _{IReflv}]

Figure 3: Transition sequence for tagging the German sentence DAMIT MÜSSTE MAN SICH NUN HERUMSCHLAGEN, (One would have to struggle with that), containing two VMWEs: (1) IReflV: sich herumschlagen; (2) VPC: herumschlagen. • Sentence \Rightarrow [configuration, optimum transition] pairs.

Training time

- Optimum trans: legal + compatible with golden annotations.
- **Compatibility**: greedy filtering algorithm.

Analysis time

- Optimum trans: predicted by the trained classifier.
- Predicted transition not legal => optimum = first legal transition.

$c \leftarrow c_s;$ while $c \notin C_t$ do $\begin{vmatrix} t \leftarrow O(c); \\ c \leftarrow t(c); \end{vmatrix}$ end	$c \leftarrow c_{s};$ while $c \notin C_{t}$ do $\begin{vmatrix} t \leftarrow \\ ArgMax_{t \in L(c)}CLF(c, t); \\ c \leftarrow t(c); \end{vmatrix}$ end
training data production	Analysis

Legality:

- SHIFT: iff $|B| \neq 0$.
- REDUCE: iff $|S| \neq 0$.

• MARK AS: iff $|S| \neq 0$ and s_0 is token.

• white merge, merge as: iff $|S| \ge 0$.

Priority order: MARK AS, MERGE AS, WHITE MERGE, REDUCE, SHIFT.

- ATILF-LLF 2 vs ATILF-LLF 1:
 - Categorization.
 - Some cases of embedded VMWEs.
 - Both cannot analyze interleaving VMWEs.
- ATILF-LLF 1's transitions:
 - Shift.
 - White merge.
 - Merge as C+Reduce.
 - MARK AS C+REDUCE: hard-coded procedures.

Experimental setup

- Focused elements: S₁, S₀, B₀ and sometimes B₁.
- **Bi-grams:** S_1S_0 , S_0B_0 , S_1B_0 , and sometimes S_0B_1 , S_0B_2 .
 - For a bi-gram XY: $X_w Y_w$, $X_p Y_p$, $X_l Y_l$, $X_p Y_l$ and $X_l Y_p$
- Trigrams: S₁S₀B₀
 - For a trigram XYZ: $X_wY_wZ_w$, $X_lY_lZ_l$, $X_pY_pZ_p$, $X_lY_pZ_p$, $X_pY_lZ_p$, $X_pY_pZ_l$, $X_lY_lZ_p$, $X_lY_pZ_l$, $X_pY_lZ_l$
- Languages without morphological information
 - $\cdot\,$ using the last two and last three letters as suffixes.

- B_i having syntactic dependency L on S_0 .
 - RIGHTDEP(S₀,B_i)=True
 - RIGHTDEPLAB(S₀,B_i)=L
- *B_i* is *S*₀'s syntactic governor with label L:
 - LeftDep(S₀,B_i)=True
 - LEFTDEPLAB(S₀,B_i)=L
- There is a syntactic relation l between S_0, S_1
 - · syntacticRelation(S $_0$,S $_1$) = \pm L

· History-based features

- Represents the sequence of previous transitions
- · Distance-based features
 - Represents the distance between S_0 and S_1 and between S_0 and B_0

dictionary-based features

- + S_{0} belongs to the MWT dictionary
- S_0 , S_1 , B_0 , B_1 or B_2 belong to an entry of VMWE dictionary
- · Stack-length-based features

Results

Identification results

- Heterogeneous results across languages:
 - Size of corpora.
 - Availability and the quality of annotations.
 - Most common VMWE categories in train and test sets.
- Positive correlation: the F-score and the training set size.
- Linear negative correlation: VMWE-based F-score and the proportion of unknown VMWE occurrences in test sets.

Figure 4: VMWE-based F-score and the proportion of unknown VMWE occurrences in test sets.

French?

Figure 5: VMWE-based F-scores for multiple experiments on French.

Identification results - ATILF-LLF 2 vs ATILF-LLF 1

- ATILF-LLF 1 reached best scores for all languages (except HU and RO).
- Test sets: 56.5 vs 56.7.
- · Cross-validation:
 - ATILF-LLF 2 beats ATILF-LLF 1 (10/18 languages).
 - Average gain: 4.2-point.
- · Good results?
 - Categorization => more transitions.
 - Extended expressive power.
 - Elegant architecture .

Categorization results

Figure 6: languages according to their F-scores on test set.

- ATILF-LLF 2 reaches high performance on categorization too
- Performance varies greatly across categories.
- General trend: higher performance for IReflV, then LVC, then ID

Conclusion

- Simple transition-based system.
- Very competitive scores.
- Quite robust across languages.
- Linear time complexity.
- Capable of handling discontinuity and embedding.
- Apply more sophisticated features!
- design deep models!

Acknowledgement

• This work was partially funded by the French National Research Agency (PARSEME-FR ANR-14-CERA-0001).

Get the source of this tagger from

github.com/hazemalsaied/IdenSys

The theme *itself* is licensed under a MIT License.

Questions?

References

References i

- Al Saied, H., Candito, M., and Constant, M. (2017).
 The ATILF-LLF system for parseme shared task: a transition-based verbal multiword expression tagger.
 In Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017), pages 127–132, Valencia, Spain. Association for Computational Linguistics.
- Savary, A., Ramisch, C., Cordeiro, S., Sangati, F., Vincze, V., QasemiZadeh, B., Candito, M., Cap, F., Giouli, V., Stoyanova, I., and Doucet, A. (2017).

The PARSEME Shared Task on Automatic Identification of Verbal Multi-word Expressions.

In Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017), Valencia, Spain.